

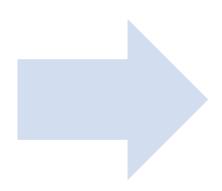
Entwicklung von Gefahrenhinweiskarten für Hangrutschungen aus konsolidierten Inventardaten

Projektziele & Eckdaten

- Methodik zur Vervollständigung historischer Ereignisdaten für Hangrutschungen
 - Umfangreicher Inventardatensatz für zwei ausgewählte Bundesländer
 - Durch Intelligente Datenfusion von ALS-Höhenmodellen und multispektralen, optischen Satellitendaten (Sentinel-2) mit bestehenden Hangrutschungskatastern
- Erstellung darauf aufbauender robuster Gefahrenhinweiskarten
- Aspekte von Geodatenmanagement, Datenqualität, Nachvollziehbarkeit & Langzeitarchivierung
- Laufzeit 01.10.21 31.03.24
- Bedarfsträger: Bundesministerium für Landesverteidigung
 - LOI
 - Amt der NÖ Landesregierung, Baudirektion Geologischer Dienst
 - Amt der Kärntner Landesregierung, Abteilung 8 Geologie und Gewässermonitoring
 - Österreichisches Rotes Kreuz, Einsatz und Internationale Zusammenarbeit
 - SCSC Swiss Data Science Center
 - EODC Earth Observation Data Center for Water Resources Monitoring

Konsortium

- SBA Research gGmbH
 - Rudolf Mayer, Andrea Siposova, Joan Salva
- AIT Austrian Institute of Technology GmbH
 - Jasmin Lampert, Alexander Schindler
- GeoSphere Austria
 - Michael Avian, Matthias Schlögl, Marc Ostermann
- GeoVille GmbH
 - Martin Gritsch, Michaela Seewald
- Disaster Competence Network Austria (DCNA)
 - Susanna Wernhart, Christina Rechberger



Projektmotivation -> Projektziel

Ein qualitativ hochwertiges und erweitertes Daten-Inventar ist die Grundbedingung für ein besseres Verständnis von Hangrutschungen, sowie die Erstellung von Dispositions- und Gefahrenhinweiskarten, als Basis für Risikoanalysen oder die Entwicklung von Frühwarnsystemen

1.Entwicklung einer Methodik zur Vervollständigung historischer Ereignisdaten für Hangrutschungen aus Fernerkundungsdaten (ALS und Multispektrale Satellitendaten)

2.→ dadurch Erweiterung der Inventardatensätze in zwei Bundesländern

Schutz von Menschenleben, Verringerung von Schäden an Gebäuden und Infrastruktur

Arbeitspakete

AP1 Projektmanagement

AP7 Dissemination und Exploitation

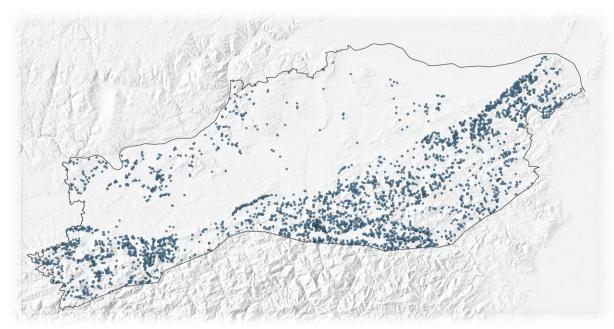
AP 2 Automatisierte Detektion von Hangrutschungen in digitalen Höhenmodellen

AP 6 FAIR
Datenmanagement von
Geodaten, Vertrauen und
Auditierbarkeit des
Inventars

AP 3 Detektion von Hangrutschungen aus Satellitendaten

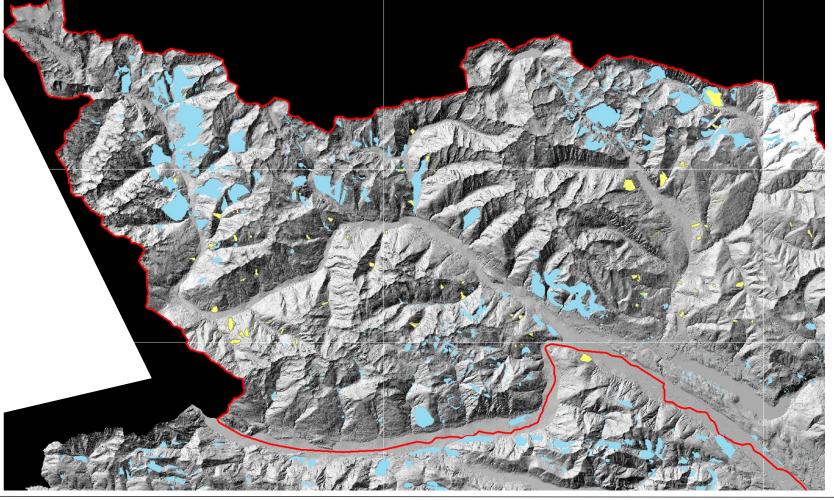
AP 5
Suszeptibilitätsmodellier
ung und Visualisierung
von Hangrutschungen

AP 4 AI unterstützte Datenfusion und Qualitätskontrolle



Validierung & Harmonisierung des Inventars

- Zwei Modellregionen: Kärnten und Niederösterreich; Beispiel KTN
 - Hangrutschungsinventar GEORIOS
 - Hangrutschungsinventar Landesgeologie Kärnten
 - ...
 - Zusammenführung in mehreren Iterationen
 - Visuelle Interpretation von ALS-basierten Digitalen Geländemodellen, Orthophotos, ...



Datengrundlagen & Datenmanagement

Erweiterung Hangrutschungsinventar Polygoninformation Bereich Oberkärnten

- Datensatz KAGIS (blau)
- Weitere Hangrutschungen als Punkte vorhanden
- ALS-DTM basierte Kartierung (Stand 2012)
- manuelle Kartierung (gelb, n=564),
- Geländevalidierung Sommer 2022

Gefördert/finanziert durch die Si

Datengrundlagen & Datenmanagement

- Konsolidiertes Hangrutschungsinventar Beispiel Kärnten, Vorgehensweise
 - Kontrolle der Punktinformation:
 - Punkt in der Anrisszone?
 - Wenn nein → Versetzen des Punktes

• Filterung der Duplikate (automatisch, manuelle Kontrolle)

Er	Ereignisinventar_konsolidiert_clipped_v3											
	FID	Shape	fid 1	W	dG	Uр	evnt d	source	Ist pdt	modifid	checked	loc qul
Þ	1462	Point	3200	Ш			<null></null>	ALS-DGM	<null></null>	Source: KAGIS MB flächig	0	0
L	1463	Point	2903				<null></null>	ALS-DGM	<null></null>	Source: KAGIS MB_flächig	0	0
	1464	Point	2871	П			<null></null>	ALS-DGM	<null></null>	Source: KAGIS MB_flächig	0	0
	1465	Point	2794				<null></null>	ALS-DGM	<null></null>	Source: KAGIS MB_flächig	0	0
L	1466	Point	2872				<null></null>	ALS-DGM	<null></null>	Source: KAGIS MB_flächig	0	0
	1469	Point	2744				<null></null>	ALS-DGM	<null></null>	Source: KAGIS MB_flächig	2	0
	1471	Point	3261	П			<null></null>	ALS-DGM	<null></null>	Source: KAGIS MB_flächig	0	0
L	1472	Point	0				<null></null>	ALS-DGM	<null></null>	Punkt ergaenzt	1	0
L	1474	Point	0				<null></null>	ALS-DGM	<null></null>	Punkt ergaenzt	1	0
	1475	Point	2725				<null></null>	ALS-DGM	<null></null>	Source: KAGIS MB_flächig	0	0
	1476	Point	2719				<null></null>	ALS-DGM	<null></null>	Source: KAGIS MB_flächig	0	0

- Output/ Mehrwert:
 - Konsolidiertes Inventar inkl. zugehörige Informationen kann jetzt mit den vorhandenen Inventaren (Landesgeologie Kärnten, GEORIOS) verknüpft warden
 - Abstimmung: Qualitätsaussagen und Handlungsempfehlungen

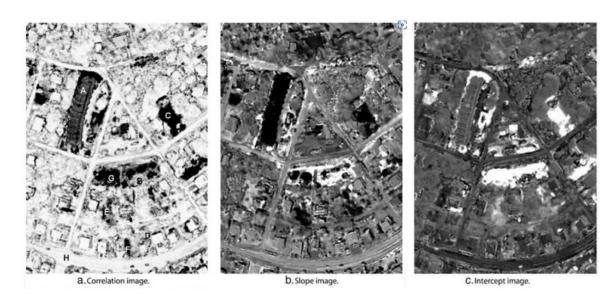
Detektion aus optischen Satellitendaten

- Change-Dedection zwischen benachbarten Zeitpunkten
- SENTINEL-2 Daten als Quelle
 - Vorteile: hohe Frequenz, frei verfügbar
 - Limitierungen: räumliche Auflösung; Wolkenbedeckung

Sentinel 2-Ausschnitt, vor dem Ereignis

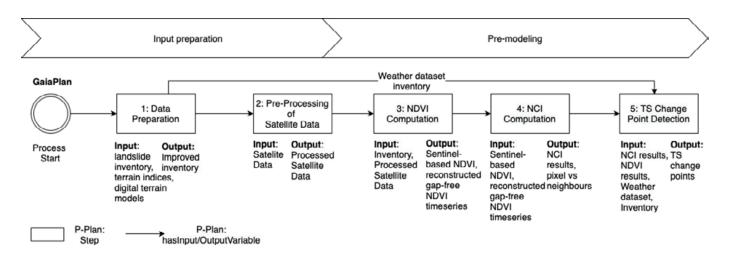
Sentinel 2-Ausschnitt, nach dem Ereignis

Ergebnis (Basemap: Google Earth)



Datenfusion & Qualitätskontrolle

- Kombination von unterschiedlichen Informationen
 - Detektion aus optischen Satellitendaten & ALS
 - Weitere Datenquellen zur Reduktion Falsch Positiver Detektionen
- Einbeziehung von Nachbarschaft zur Plausibilitätsprüfung



FAIR Datamanagement & Auditierbarkeit

- Erstellung eines FAIR Data Management Plans (DMP)
- Automatische Unterstüzung des Datenmanagements
 - Detaillierte Beschreibung der Datenverarbeitungsschritte
 - Definition von Input & Output Daten, Tools, etc.
 - Erfassung von Durchläufen mittels "trace templates"

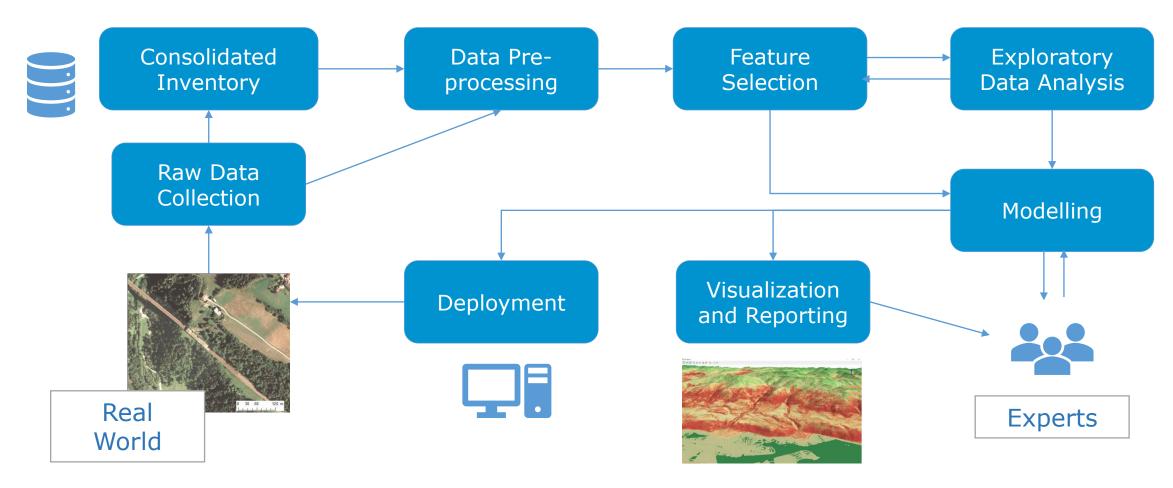
Suszeptibilitätsmodellierung & -karte

- Idee: Modellierung der Eintretenswahrscheinlichkeit eines Ereignisses
- Suszeptibilität: Wahrscheinlichkeit, dass Klasse "Ereignis: WAHR"
- Zielvariable: historische Rutschung belegbar (Ereignisinventar)
- Erklärende Variablen: Prädisposition

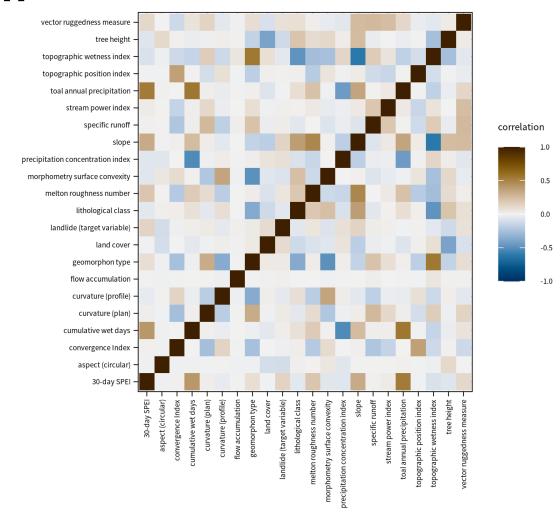
Datenquellen

- Rutschungsinventar (Subset: seichtgründige Rutschungen)
- Digitales Höhenmodell Österreich (10 m, KAGIS)
- Digitales Höhenmodell & Oberflächenmodell (5 m, KAGIS)
- Geologie 1:200k (Vektor, GeoSphere Austria)
- Landbedeckung: cadasterENV (10 m, GeoVille)
- Hochaufgelöste Waldkarte (10 m, BFW)
- Klimatologische Prädisposition: SPARTACUS (1 km, GeoSphere Austria)
- Verkehrsinfrastruktur (Vektor, GIP)
- Für Kärnten zusätzlich: Hinweiskarten Oberflächenabfluss Kärnten (KAGIS)

Inputdatensatz	Prädisposition
Digitales Höhenmodell Österreich	Geomorphometrie & Hydrologie
Digitales Höhen- & Oberflächenmodell	Baumhöhe
Geologie 1:200,000	Geologie
Landbedeckung	Landbedeckung
Hochgenaue Waldkarte	Waldbedeckung
SPARTACUS	Niederschlag (Klimatologie)
Verkehrsinfrastruktur	Distanz zu Straßen
Hinweiskarten Oberflächenabfluss	Hangwasser

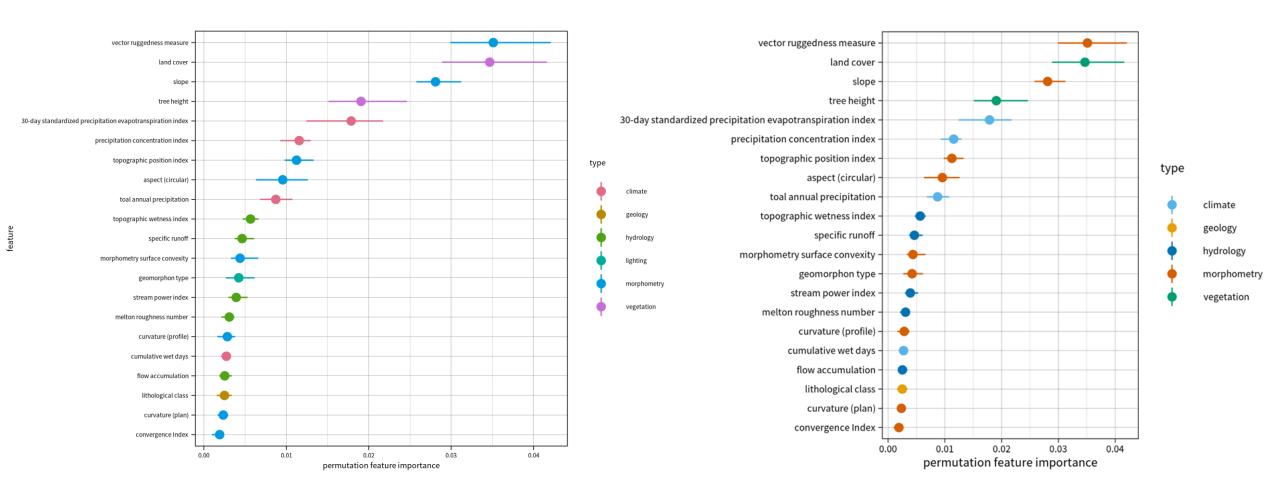


Suszeptibilitätsmodellierung: Workflow

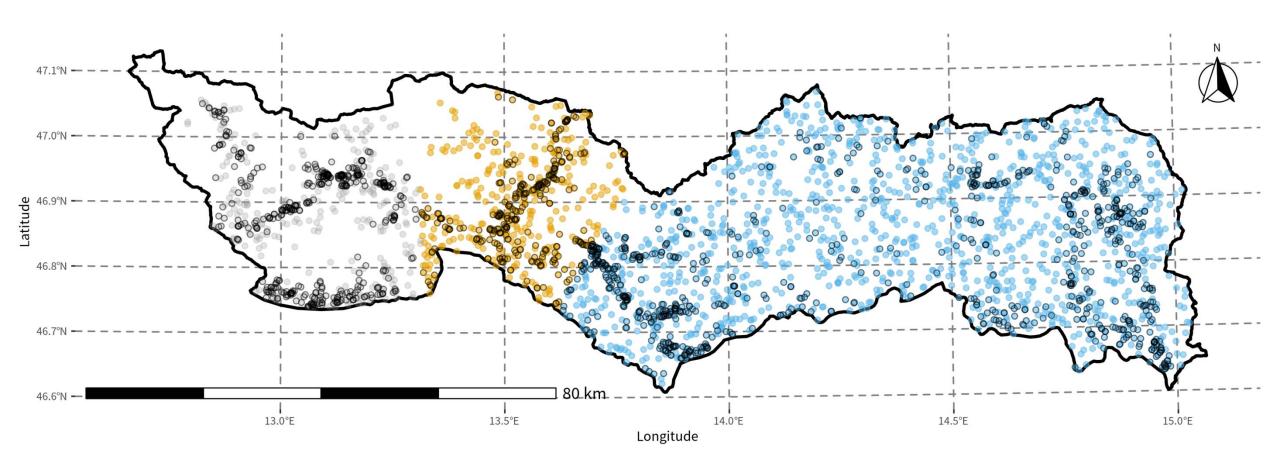


Erklärende Variablen: Kärnten

Inputdatensatz	Prädisposition
Digitales Höhenmodell Österreich	Geomorphometrie & Hydrologie
Digitales Höhen- & Oberflächenmodell	Baumhöhe
Geologie 1:200,000	Geologie
Landbedeckung	Landbedeckung
Hochgenaue Waldkarte	Waldbedeckung
SPARTACUS	Niederschlag (Klimatologie)
Verkehrsinfrastruktur	Distanz zu Straßen
Hinweiskarten Oberflächenabfluss	Hangwasser



Wichtigkeit der Variablen: KTN & NÖ



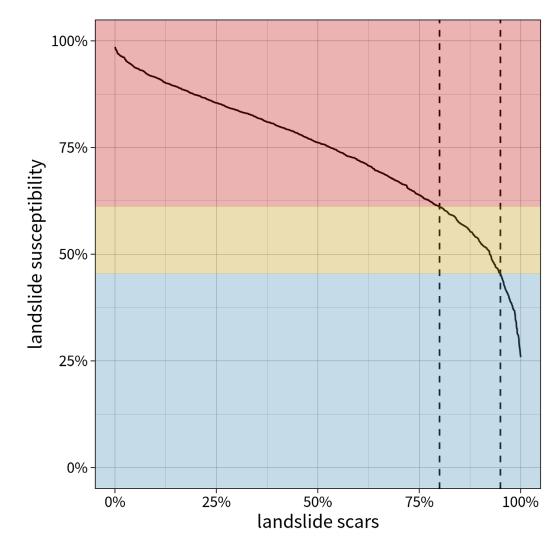
Räumliche Kreuzvalidierung

Einteilung in Klassen

Klasseneinteilung auf Basis der modellierten Eintrittswahrscheinlichkeit der Rutschungs-Pixel

Klasse 1: 80 % der Schäden

Klasse 2: 15 % der Schäden (kumuliert: 95 %)


Klasse 3: 5% der Schäden (Rest)

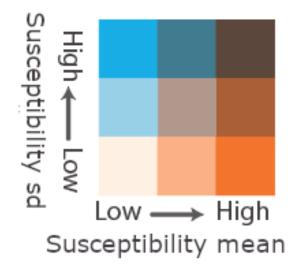
Für Niederösterreich:

Q80: 0.7288 Q95: 0.52

Für Kärnten:

Q80: 0.6096 Q95: 0.4481

Visualisierung

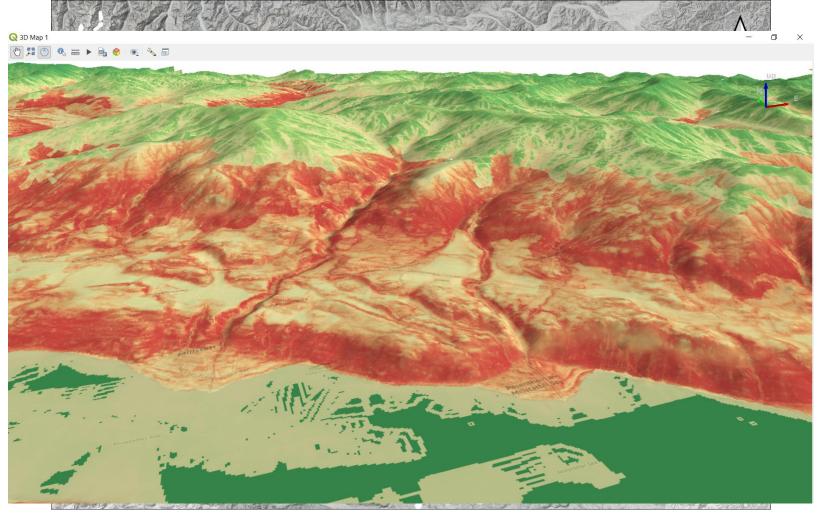

• Idee: Intuitive und interaktive Webapplikation

Umsetzung:

- Leaflet Karte mit Visualisierung des Hangrutschungsinventars
- Merkmale: Rutschungstyp, Datum, Datenquelle
- Detaillierte 3D-View mit Qgis2threejs (3D Visualisierung im Browser)

Layer:

- Basemap
- Hangrutschungsinventar
- Suszeptibilitätskarte Mittelwert (mean)
- Suszeptibilitätskarte Standardabweichung (sd)
- Bivariate Darstellung: mean + sd



Beispielvisualisierung KTN

Vielen Dank!

Rudolf Mayer SBA Research Floragasse 7, 1040 Wien rmayer@sba-research.org

